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ABSTRACT. The free group T(2) is generated by A = (1 2, 0 1) and B = 
(1 0, -2 1), and setting X(, 1)(A) = exp(27ri4), X(, 1) (B) = exp(27riq) defines 
a unitary character on I(2) for 0 < 4, q < 1 . A program is devised to 
compute 

/L(tr) = ZX(, (conj. class), 

summed over all primitive conjugacy classes of I(2) of trace tr. Combined 
with a Luo-Sarnak theorem, this yields lower bounds for the spectral variance 
for a large sampling of characters in the range 0 < , q < 1. The results 
indicate that the Berry conjecture for spectral rigidity does not hold for this set 
of classically chaotic systems. The program is also used to compute 

0(x) = In(N(y)), 

summed over all primitive conjugacy classes of I(2) of norm N({y}) < x. 
The function 0(x) is asymptotic to x, and the remainder can be written as 
10(x) - xl = x . The values of ,B(x) are computed for all traces between 
3202 and 4802 (here x = tr2 -2). The ,B's cluster around 0.6, attaining a 
maximum of 2/3. Finally, it is proved that the remainder 0(x) - x has a 
negative bias by showing that the mean normalized remainder converges to a 
negative limit. 

1. INTRODUCTION 

The purpose of this paper is threefold: (1) to describe a program for comput- 
ing the conjugacy classes of 17(2), (2) to apply this to find the spectral variance 
of the Laplacian for character varieties, and (3) to study the remainders for the 
prime geodesic asymptotic formulas (see [3]) 

(1.1) 0(x) = Eln(N(y)) and ir(x) = 1, 

where the sum is over the primitive conjugacy classes of norm N(y) < x. The 
numerical data indicate that the Berry conjecture [2] for the spectral rigidity of 
strongly chaotic systems does not hold in this situation, even when the arith- 
metical symmetry is broken. Writing the remainder as I0(x) - xI = xfl , we find 
that the largest value of fi is 2/3. This is somewhat of a surprise since the 
expected value was 1/2. The remainder data turns out to have a negative bias; 
this is explained by the fact that the normalized remainders (0(X) -X)/X1/2 and 
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FIGURE 1 

(7r(x) - li(x)) ln(x)/x1/2 ultimately have a negative mean, which, incidentally, 
implies an omega result for the remainders. 

The program makes use of the fact that there is a one-to-one correspondence 
between the primitive conjugacy classes and the directed closed geodesics for a 
discrete subgroup of PSL(2, R) . So to study a particular (not necessarily prim- 
itive) conjugacy class of trace greater than 2, we find a (hyperbolic) matrix a in 
this class whose directed axis intersects a fixed (convex) fundamental domain 
F; the segment of the axis in F will be part of the directed closed geodesic 
corresponding to the conjugacy class. This axis leaves F at two points going 
into two of the adjoining fundamental domains. Corresponding to each such 
side there is a generator of the group, taking F into an abutting domain. If we 
conjugate a with respect to this generator we see that the axis of the conjugated 
matrix will again intersect F and be a part of the original closed geodesic in 
F. In the next step there is only one possible exit from F which does not 
backtrack (i.e., we eliminate from consideration the inverse of the conjugation 
used in the previous step). Continuing in this way, we eventually return to the 
original piece of the geodesic in F ; that is, we get back to the matrix a. The set 
of matrices encountered consists of all the matrices in the conjugacy class whose 
axes intersect F; we call such a set a chain. Each matrix in a chain appears 
in this set only once. The chain procedure in the program finds all chains of a 
given trace. This idea was previously used to compute the conjugacy classes for 
the "octagonal group" by Aurich et al. [1]. 

We shall study the subgroup 

(1.2) 1(2) = {(a b, c d) E PSL(2, R) congruent to Imod (2)}, 

which, together with an associated character X, can be used to define the auto- 
morphic functions 

(1.3) u(yz) = x(y)u(z), yE Er(2). 

For F we choose the fundamental domain depicted in Fig. 1. The program 
computes the number of primitive chains whose elements have a given trace 
(tr) as well as the value of X on each such chain (a character does not change 
its value under coinjugation). 

Luo and Sarnak [5] have shown for cocompact arithmetic subgroups that a 
lower bound for the spectral variance of the twisted Laplacian can be obtained 



CONJUGACY CLASSES OF r(2) AND SPECTRAL RIGIDITY 1289 

from the rate of growth r of the series 

(1.4) x[n] I ln2(tr),u(tr)2, 

summed over all tr < 4n + 2; here, 

(1.5) ,u(tr) = x(chain), 

summed over all primitive chains of trace tr. In the Luo-Sarnak development 
the spectral variance is bounded below by LO in the universal range, where a = 
r - 2. According to the Berry conjectures, a = 1 for integrable Hamiltonians, 
whereas for systems with chaotic dynamics the growth is logarithmic, in which 
case a will be zero. 

We have taken over this measure of spectral rigidity for {F(2), X} even 
though F is not compact. However, the Luo-Sarnak development also holds 
for noncompact cofinite arithmetic groups if the X-twisted spectrum of the 
Laplacian is a pure point spectrum as it is for the generic x in our case (see ?3 
for further details). It should be noted that the original notion of spectral rigidity 
may not be applicable for general nonarithmetic noncocompact subgroups in 
view of the strong possibility that the Laplacian for such systems may not have 
any (nonexceptional) point spectrum (see [8] and [11]). 

As can be seen from Figures 4, 5, and 6, we found that a > 0 for all of 
the sampled values of X. These results conform with previous investigations. 
Numerical data obtained by Schmit [9] for the Dirichlet problem on the fun- 
damental domain of a cocompact subgroup indicate that the spectral rigidity in 
this case is the same as that of integrable systems (i.e., a = 1) . Luo and Sarnak 
[5] proved for twisted arithmetic cocompact subgroups that 

(1.6) a > 2(l - 4Ao(x))'12- 1, 

where lo(X) is the smallest eigenvalue of the twisted Laplacian. 
Table 1 contains a list of the number of conjugacy classes (in parentheses) for 

each trace number n < 1000 (trace = 4n + 2). In Fig. 7 we present a histogram 
of the remainder powers fl(x) (see above) for all of the trace numbers between 
800 and 1200. It will be noticed that most of the remainders are negative (i.e., 
0(x) < x) and that the fl's bunch up around the upper bound of 2/3. 

Section 4 contains a proof for all cofinite F in PSL(2, R) that the mean 
normalized remainder (MNR) for 0(x) (Theorem 4.1) and 7r(x) (Theorem 
4.3) approaches a limit, which in the case of 7(2) is -7. This explains the 
negative bias. The computed MNR for 0 turns out to be slowly decreasing 
from -6.70 at n = 100 to -6.90 at n = 1000. On the other hand, the MNR 
data for .r are increasing from -8.23 at n = 100 to -7.88 at n = 1000 
(see Table 2). These results suggest that the previous computations yield good 
approximations to the true asymptotic behavior of these various quantities. 

2. THE CONJUGACY CLASSES OF r(2) 

There are several symmetries of 1(2) which can be used to shorten the pro- 
gram. It is easy to see that this group is closed under inverse, transposition 
and sign change of the off diagonal elements of a matrix (scod). We take these 
symmetries up in turn: 
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(i) Inverse: A hyperbolic matrix in PSL(2, R) and its inverse share the same 
axis but the two axes are oppositely directed. Likewise, the set of inverses of 
the matrices in a chain is again a chain, and the corresponding closed geodesics 
are the same but oppositely directed. This means that the two chains are always 
distinct, and in our program they are treated separately. 

(ii) Transposition: Corresponding to the four sides of F are the four gener- 
ators 

(2.1) A=(12,01), A-'=(1 -2,01), 
B=(1 O,-2 1), B-1 =(1 0,2 1). 

A conjugation involving any one of these matrices becomes, under transposition, 
another conjugation with A ?-+ B, A-' ?- B-1 . If the transpose of one matrix 
in the chain is in the chain, then the transpose of all matrices in the chain are in 
the chain. Thus, the chain is either distinct from its transpose or self-transposed. 

(iii) Scod: The conjugate of the scod of a given matrix by one of the four 
generators is the scod of the conjugate of the given matrix under the inverse 
of the same generator; i.e., A -+ A-', B -+ B-1 . This is evident from the 
following conjugations on changing the signs of b, c, and j simultaneously: 

AJ(a b, c d)A-= (a + 2jc b + 2jd - 2ja - 4j2c, c d - 2jc), 
BJ(a b, c d)B-i = (a + 2jb b, c - 2ja + 2jd - 4j2b d - 2jb). 

We conclude from this that if a given chain is, say, self-transposed, then the 
scod and the scod of its transpose will also be self-transposed. Hence if a chain 
includes neither a transpose nor a scod of any particular matrix in the chain, 
then its transpose, its scod and the scod of its transpose will appear in distinct 
chains. If the transpose (or the scod (but not both)) of any particular matrix 
in the chain appears in the chain, then only the scod (or the transpose) chain 
will be distinct. Finally, if both the transpose and the scod of some matrix in 
the chain belong to the chain, then the chain will be self-transposed and self- 
scod. This permits us to limit our computation to only one of the four (two 
or one) possible chains connected by transposition and scod. Moreover, all of 
these considerations hold for the inverse chains for which the character x is 
the complex conjugate of the x for the original chain. Thus, the imaginary part 
of the x contribution is cancelled out, and we need only retain the real part. 

Proposition 1. The traces of hyperbolic matrices in I(2) are of the form tr = 
4n + 2 for n a positive integer. 

Remark. Because we are treating I(2) in PSL(2, R), we can limit ourselves 
to positive traces. In what follows we shall call n the trace number. 

Proof of Proposition 1. Since a and d are odd we can write a = 2j + 1 and 
d = 2k + 1. Then 

ad- 1 =4jk+2(j+k)=bc. 
Since the right-hand side is divisible by 4, (j + k) has to be even, and since 
tr= a+d = 2(j+k)+2, we see that tr is ofthe form 4n+2. If the matrix 
is hyperbolic, then tr > 2, and hence n > 0. o 

It is easy to see that each conjugacy class with tr > 2 contains matrices whose 
axes intersect F . Since the union of the {yF, y E I(2)} fills out the hyperbolic 
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plane, the axis of any matrix a in this class will intersect some y 1F, and the 
axis of fi = yay-h will intersect F. For the fundamental domain F with 
cusps at -1, 0, 1 and oc this can happen if and only if the fixed points of fi 
straddle the point -1, 0, or 1 on the real axis. Note that the points -1, 0, 1, 
and oc do not belong to F. 

Lemma 2. Suppose a = (a b, c d) is hyperbolic. The fixed points of a will 
straddle 0 if and only if 0 < a < tr, 1 if and only if 0 < a - c < tr, and -1 
if and only if 0< a + c <tr. 
Proof. The fixed points of a are 

(2.3) xi = (2a - tr+(tr2 -4)1/2)/2c = (2a - tr+ tr)/2c F 3/c, 

where, since tr > 6, 

(2.4) ? < 6 = t2(1 - (1 - 4/ tr)1) < 2/ tr < 1/2. 

If c > 0, then x_ < 1 < x+ if and only if 

a - tr+3 < c < a - 3. 

Since a and c are integers, we see that this condition is the same as 0 < a - c < 
tr. On the other hand, if c < 0, then x+ < 1 < x_ if and only if 

a - 3 > c > a - tr +3. 
This is exactly the same condition as before. This proves the second assertion 
of the lemma, and the others are proved in a similar fashion. o 

For a hyperbolic matrix, if 0 < a < tr, then a + d > 2, ad = a(tr-a) > 1 
and bc = ad - 1 > 0, so that b and c have the same sign. Moreover, neither 
b nor c can vanish, since otherwise ad = 1. 

Definition. A matrix whose axis intersects F is called an admissible matrix 
and a zero-admissible matrix if its axis straddles 0 (i.e., if 0 < a < tr); if in 
addition 0 < b < c, it is called a list matrix. 

It is easy to see that there are only a finite number of list matrices. In the 
first place, a = 2k + 1 can take on only tr /2 values. For each such choice of 
k,~ 

(2.5) bc = ad - 1 = (2k + 1)(4n + 2 - 2k - 1) - 1 = 4(2kn + n - k2). 

There are at most (2kn + n - k2)1/2 choices for b/2, 0 < b < c, and once b is 
chosen, c is uniquely determined by the relation (2.5). The list procedure in the 
program carries out the calculation which we have just outlined for 0 < b < c. 
The transpose and the scod of the above matrices also have 0 < a < tr, so 
that the number of zero-admissible matrices is less than or equal to four times 
the number of list matrices computed above. In the program the arrays a, b, c 
enumerate the elements in the list matrices. The f array is a flag, which at any 
given point in the program is 1 if the corresponding list matrix (or its transpose 
or scod) has been used, and is otherwise 0. 

There is a simple correspondence between the admissible matrices for which 
0<a <tr an,dthose forwhich 0< a-c<tr or 0<a+c<tr. Infact, 
(2.6) 
/1 :F 1 , 1( b\ c dL 1\ 

/1 
1 1 0 1) = /aF b_ c d?c, b\ = ?(a-d)]b-cL 
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FIGURE 2. y =-X/(2x - 1) 

Thus, suppose 0 < a - c < tr and, say, c > 0 (otherwise write this as 
O < a + (-c) < tr with -c > 0). Then the matrix on the right (using the 
upper sign) is a zero-admissible matrix with the same trace. This shows that 
the number of admissible matrices is at most four times the number of zero- 
admissible matrices. We conclude from this that the number of steps in any 
chain procedure is finite and that each closed geodesic has only a finite number 
of axis segments. The next lemma shows that when we exhaust the list matrices 
in the chain procedure (which also takes care of their transposes and scods), we 
will automatically exhaust all of the admissible matrices. Notice that the scod 
of the set of list matrices includes their inverses. 

Lemma 3. Each chain contains at least one zero-admissible matrix. 
Proof. It suffices to consider an admissible matrix y = (a b, c d) whose fixed 
points x? satisfy the conditions 0 < x_ < 1 and x+ > 1. Suppose we 
conjugate with respect to B. The fixed points of y' = ByB-1 will be y? = 
Bx?: y = -x/(2x - 1); see Fig. 2. In any case, 0 > y+ > - 1 . If 0 < x_ < 1/2, 
then y_ > 0, and y' will be a zero-admissible matrix, and the lemma is valid. 
If x_ = 1/2, then IY-I = oc, and it follows from (2.3) that c' = 0, which is 
impossible for a hyperbolic matrix in I7(2). Finally, if 1 > x_ > 1/2, then 
y_ < -1, and y' is admissible and a member of the chain. 

Next we conjugate y' by A to get y" = ABy(AB)-l whose fixed points are 
z? = ABx?: z = (3x - 2)/(2x - 1); see Fig. 3. In any case, z+ > 1. If 
1/2 < x_ < 2/3, then z_ < 0, and y" is a zero-admissible matrix, and again 
the lemma is valid. If 2/3 < x_ < 1, then 0 < z_ < 1, and y" is admissible 
with z_ and z+ straddling 1 as in the case of y. We now show that as we 
iterate this process the x_ decreases, with the absolute value of the increment 
of decrease bounded from below. In fact, 

3 = x - z = x - (3x - 2)/(2x - 1) = x(x - 1)2/(2x - 1). 

As x approaches 1/2 from above, 3 grows and x_ becomes less than 2/3 
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FIGURE 3. z = (3x - 2)/(2x - 1) 

(and hence the corresponding y" is zero-admissible) after a finite number of 
steps. This concludes the proof of the lemma. O 

We are now in a position to explain the structure of the program. The chain 
procedure computes all of the chains of a given trace = 4n + 2 modulo their 
transpositions and scods. It does so by systematically going through the list ma- 
trices (with 0 < b < c) and starting a new chain with the first such matrix which 
has not been in any previous chain; the latter is denoted by a[i], b[i], c[i]. 
This selection is performed, with the help of the flag array f, by the "repeat" 
statement at the end of the procedure. After setting the initial chain matrix 
(a 1, b 1, cl) equal to the so selected list matrix, the program goes on to the 
link procedure, which then repeatedly determines the next link in the chain. 
However, just before this, the program initializes e, s, and t. The conjuga- 
tions defined by the four generators (2.1) are enumerated by e, and the ol 
array records the inverse of the previously used conjugation. The variable s is 
a flag which is initially 0 but is set equal to one in the link procedure when the 
final link in the chain is attained (i.e., when the link calculation finally returns 
to its starting matrix). The value s = 1 terminates the first "repeat" statement 
in the chain procedure. The variable t is also a flag which is adjusted so that 
at the end of a chain computation it is equal to 0 if the chain is neither self- 
transposed nor self-scod, equal to 1 if it is self-transposed or self-scod (but not 
both), and equal to or greater than 2 if it is both self-transposed and self-scod. 
If b[i] = c[i], then t starts off as 1, since the chain is then necessarily self- 
transposed. The chain procedure ends by summing up the X-values of each of 
the chains of trace number n. 

The link procedure computes the next link in the chain. It starts by making 
sure that the inverse of the previously used conjugation is not used again. It 
then proceeds to calculate successively the other conjugations until it reaches an 
admissible matrix. At each step it sets the a 1, b 1, c I array parameter u ahead 
by 1. First it checks to see whether the condition 0 < a < tr is satisfied by 
al[u]. If so, it removes (a = al[u], b = Ibl[u]I) or (a = al[u], b = Icl[u]l) 
from the available list matrices by changing the corresponding matrix f-value 



1294 RALPH PHILLIPS 

to 1. Then it checks to see whether or not (al[u], bl[u], cl[u]) is equal to 
the starting matrix. If not, it initializes e to 0 for the next link procedure and 
determines whether it is the transpose or scod of the starting matrix; in either 
case it increases t by 1. However, when b[i] = c[i], the transpose option 
is not realized (the scod option remains), and in this case we have to rely on 
the initializing of t in the chain procedure to advance t by 1. Finally, if 
(al[u], bl[u], cl[u]) is equal to the starting matrix, then s is set equal to 1 to 
end the chain. If the condition 0 < a < tr is not met, the program checks to 
see whether the companion condition 0 < a + c < tr is met. If so, the matrix 
is admissible and can be added to the chain and e is reset to 0. If not, the 
matrix does not belong to the chain and we return (through chain) to link with 
e increased by 1 (modulo 4) and the array parameter u reset. This last option 
can be iterated at most three times since one of the conjugations has to result 
in an admissible matrix. 

Back in the chain procedure the program combines the contributions of all 
the chains of trace number n by summing the chain characters. The quantity 
e 1 is equal to one-half of the contribution of a given chain, its transpose, its 
scod, and the scod of its transpose. If t = 0, then we combine the contributions 
of the computed chain with that of the transpose, the scod and the transposed- 
scod to get 2 e 1. If t = 1, then the chain is either self-transposed or self-scod 
(but not both), and there is only the contribution of two chains to be considered, 
so e 1 is added. Finally, if t > 2, then the chain is both self-transpose arid self- 
scod, and there is only the contribution of this one chain to take care of, so 
el/2 is added. 

So far we have neglected the evaluation of the character X. The program 
computes the sum (1.4) for all trace numbers < max, and this for d different 
characters parameterized by the k, 1, r arrays. To describe X, we make use 
of the fact that 17(2) is a free group generated by A and B. Each element of 
the group can be uniquely expressed as 

(2.7) a= APIB 'A Bq2 APkBqk 

The character is determined by two parameters n, 5, 0 < _, I < 1: 

(2.8) X(a)(A) = exp(27ri4), X(,,)(B) = exp(27Jil) 

and 

(2.9) x(g,l)(a) = exp(27i(p + qq)), p = vpJ q = Eqj 

In the program the char procedure computes p and q for the initial list matrix, 
and these are used in the chain procedure to compute e 1 . To understand how 
this is done, we need the following 

Proposition 4. Suppose that a is the starting hyperbolic matrix for a chain, and 
y is the product of the conjugating matrices culminating with a = yay- I. If a 
is primitive, then y is equal to a or its inverse. If a = a k and ao is primitive, 
then y = ao or its inverse. 
Proof. Clearly, a and y commute, and this implies that they have the same 
fixed points. If a is primitive, this means that y = ak for some k E Z. On 
the other hand, y has to be primitive since, if k is not of absolute value 1, the 
chain computation would have ended when the cumulative conjugation reached 
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a (or its inverse if k < 0). This proves the first assertion, and the second 
follows by a similar argument. El 

When the current conjugating matrix results in an admissible matrix, then it 
is fed into the char procedure as ol[u] + 2 (mod 4). If this is A (or A-1), 
then 1 (or -1) is added to p, whereas if this is B (or B-1), then 1 (or 
-1) is added to q. In the computation of e 1 we must keep in mind that 
the contribution of the transpose interchanges p and q while that of the scod 
changes the signs of p and q. 

Finally we note that in the main part of the program we eliminate all non- 
primitive conjugacy classes by keeping track of when such classes can occur. 
Suppose the starting matrix a has eigenvalues A and 1/2I; then tr(a) = 2+ 1/I 
and tr(ak) = Ak + 1 l.k. A straightforward calculation shows that in terms of 
the trace numbers nk we obtain for the trace of a k 

n2= 4(ni + ni), 

(2.10) n3= 16n3 + 24nl + 9n1, 

n4= 64n 4+ 128n 3+ 80n 2 + 16ni. 

If we limit ourselves to the first 1000 trace numbers, then n2 occurs only for 
1 <n < 15, n3 occursonly for 1 <ni <3 ,and n4 onlyfor n1 = 1. 

One check on the program is to see whether its results remain the same if we 
conjugate by elements of the modular group. As shown in [7], this amounts to 
transforming the X-parameters (4, ) by the matrices (1 0, 0 1), (0 1, 1 0), 
(1 0, -1 - 1), (-1 - 1, 0), (0 1, -1 - 1), and (-1 - 1, 0 1). The program 
did pass this test. 

3. NUMERICAL RESULTS ON SPECTRAL RIGIDITY 

Next we discuss the output of the program. Our original aim was to find the 
rate of growth of the series x[n] described in (1.4). To this end, we determined 
the logarithm of x[n] as a function of the logarithm of the trace (4n + 2) of the 
nth trace number. Since the series grows somewhat irregularly, we computed 
the slope of the best mean square linear fit over sets of 150 successive trace 
numbers, starting at the trace number 751-900 and ending at 851-1000 in 
increments of 15. For each such run the slope is given by 

(3. 1) slope = (b E ln(x[j]) - a E log(tr(j)) ln(x[j]))/(b2 - ac), 

where 

(3.2) a = E 1, b = E log(tr(j)) and c = E(log(tr(j))2; 

here all the summations are over the particular set. We recorded the average 
r of these 11 slopes and the square root of the variance; the latter we took as 
the probable error. Because of obvious symmetries, it sufficed to consider only 
character parameters in the triangle 0 < ?I < < 1 /2. 

Figures 4, 5, and 6 d'epict the results for runs of 1000 trace numbers, entailing 
1,031,772 primitive conjugacy classes. Each figure consists of computed data 
(i.e., the mean slope together with the probable error) for each run and a smooth 
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FIGURE4. 4=i/100, =0 
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FIGURE 5. s = i/100, ?I = i/lOO 

curve which roughly fits the data. The character parameters for Fig. 4 are 
4 = i/lOO, ?I = 0; those for Fig. 5 are 4 = i/l00, ?I = i/l00, and those for 
Fig. 6 are =i/100, ?1 = i/200 (0 < i < 50). 
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FIGURE 6. 4 = i/100, ij = i/200 

The slope was found to be approximately equal to 3 at parameter values 
(i/8, j/8) for integer values of i, j less than or equal to 7. These points 
are closely related to congruent subgroups (see [7]). For all of the sampled 
parameters the slope was greater than 2. As explained in the introduction, such 
slopes are not what is expected for these strongly chaotic systems. All of the 
curves display a semblance of symmetry about the line 4 = 1/2. A copy of the 
program, written in Pascal, can be found in the Supplement section at the end 
of this issue. I 

When 0 < 4, ij < 1, the X(~, ,1)-twisted Laplacian has a compact resolvent 
and hence the Luo-Sarnak theory is valid. This means that for such X the 
growth of the spectral rigidity is at least La, where a = r - 2. In order to say 
something about x's for which ij = 0 (or 4 = 0), we would have to assume 
that the spectral rigidity is continuous in X, which is not known. However, the 
partial sums (1.4) are obviously continuous in X, and hence the data in Fig. 4 
approximate the values for the slope when (4, ij) (with 0 < 4, ij < 1) is close 
to (4, 0). 

A slight modification of the last section of the program allowed us to compute 
the number of conjugacy classes (in parentheses) for each trace number n < 

1000 (see Table 1) and the remainder power ,B(x) for the function I 0(x) - xl = 
xl (see (1.1)). A histogram of these ,B's for trace numbers n between 800 and 
1200 is depicted in Fig. 7. This involves 1 , 450, 632 conjugacy classes. As can 
be seen, the maximum ,B is 2/3. By assuming the Lindelof hypothesis for 
certain L-functions, Iwaniec [4] can prove an upper bound of 2/3. Without 
this assumption, the best upper bound (also due to Iwaniec [4]) is 35/48. 
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TABLE 1. Trace number (number of conjugacy classes) 

1( 6), 2( 12), 3( 18), 4( 20), 5( 24), 6( 24), 7( 36), 8( 42), 
9( 36), 10( 24), 11( 48), 12( 72), 13( 24), 14( 48), 15( 84), 16( 48), 

17( 72), 18( 60), 19( 72), 20( 96), 21( 48), 22( 72), 23( 72), 24( 84), 
25( 60), 26( 96), 27( 160), 28( 72), 29( 96), 30( 48), 31( 84), 32( 168), 
33( 96), 34( 48), 35( 180), 36( 180), 37( 72), 38( 48), 39( 144), 40( 144), 
41( 48), 42( 144), 43( 144), 44( 216), 45( 120), 46( 48), 47( 264), 48( 180), 
49( 96), 50( 168), 51( 144), 52( 192), 53( 96), 54( 192), 55( 144), 56( 144), 
57( 192), 58( 72), 59( 240), 60( 144), 61( 120), 62( 240), 63( 270), 64( 192), 
65( 96), 66( 96), 67( 144), 68( 240), 69( 192), 70( 144), 71( 324), 72( 360), 
73( 96), 74( 168), 75( 336), 76( 144), 77( 192), 78( 144), 79( 168), 80( 364), 
81( 216), 82( 144), 83( 288), 84( 384), 85( 144), 86( 96), 87( 288), 88( 144), 
89( 240), 90( 288), 91( 240), 92( 432), 93( 144), 94( 144), 95( 336), 96( 336), 
97( 216), 98( 252), 99( 450),100( 300),101( 144),102( 240),103( 216),104( 288), 

105( 192),106( 120),107( 576),108( 288),109( 144),110( 288),111( 384),112( 336), 
113( 288),114( 192),115( 144),116( 480),117( 504),118( 144),119( 288),120( 456), 
121( 132),122( 240),123( 240),124( 432),125( 432),126( 240),127( 540),128( 360), 
129( 192),130( 144),131( 288),132( 480),133( 144),134( 384),135( 576),136( 288), 
137( 336),138( 288),139( 480),140( 288),141( 192),142( 240),143( 420),144( 576), 
145( 192),146( 336),147( 648),148( 384),149( 360),150( 360),151( 216),152( 864), 
153( 240),154( 192),155( 480),156( 288),157( 264),158( 240),159( 672),160( 336), 
161( 432),162( 612),163( 288),164( 480),165( 288),166( 168),167( 432),168( 456), 
169( 312),170( 240),171( 720),172( 360),173( 288),174( 336),175( 616),176( 672), 
177( 288),178( 192),179( 648),180( 960),181( 192),182( 384),183( 432),184( 288), 
185( 384),186( 192),187( 720),188( 576),189( 384),190( 336),191( 552),192( 720), 
193( 192),194( 480),195( 648),196( 420),197( 600),198( 504),199( 252),200( 504), 
201( 288),202( 432),203( 576),204( 864),205( 288),206( 288),207( 840),208( 528), 
209( 384),210( 288),211( 360),212( 864),213( 288),214( 288),215(1152),216( 576), 
217( 384),218( 288),219( 480),220( 288),221( 288),222( 528),223( 336),224(1032), 
225( 720),226( 288),227( 864),228( 480),229( 288),230( 384),231( 576),232( 720), 
233( 432),234( 480),235( 480),236( 576),237( 576),238( 288),239( 960),240( 672), 
241( 264),242( 672),243( 936),244( 672),245( 432),246( 480),247( 432),248( 432), 
249( 576),250( 432),251( 600),252(1296),253( 336),254( 384),255( 744),256( 576), 
257( 576) ,258( 288),259( 576) ,260(1440) ,261( 360),262( 264),263( 576),264( 576), 
265( 384),266( 384),267(1440),268( 360),269( 384),270( 576),271( 672),272(1152), 
273( 384),274( 480),275( 720),276( 576),277( 360),278( 840),279(1296),280( 576), 
281( 432),282( 672),283( 360),284( 576),285( 576),286( 288),287(1512),288( 870), 
289( 408),290( 576),291( 576),292( 960),293( 504),294( 432),295( 720),296( 576), 
297( 768),298( 240),299(1344),300(1008),301( 384),302( 624),303( 528),304( 672), 
305( 480),306( 720),307( 720),308( 960),309( 480),310( 288),311( 720),312( 864), 
313( 288),314( 864),315(1200),316( 504),317( 576),318( 480),319( 720),320(1104), 
321( 480),322( 576),323(1224),324(1260),325( 504),326( 336),327(1008),328( 576), 
329( 576),330( 672),331( 528),332(1080),333( 648),334( 624),335( 672),336(1056), 
337( 720),338( 360),339( 576),340( 576),341(1008),342( 960),343( 576),344(1152), 
345( 576),346( 312),347(1200),348(1008),349( 360),350( 960),351(1344),352( 672), 
353( 384),354( 480),355( 864),356( 960),357( 672),358( 600),359(1080),360(1116), 
361( 228),362( 936),363(1056),364( 576),365( 672),366( 432),367(1248),368(1008), 
369( 960),370( 576),371( 576),372(1536),373( 432),374( 576),375( 864),376( 576), 
377(1152),378( 576),379( 960),380(1152),381( 432),382( 576),383(1080),384(1440), 
385a( 384),386( 720),387(1296),388( 480),389( 672),390( 576),391( 648),392(1512), 
393( 672),394( 336),395(1728),396(1080),397( 648),398( 384),399(1680),400(1200), 
401( 576),402( 672),403( 720),404(1728),405( 816),406( 384),407(1152),408( 576), 
409( 384),410( 672),411(1200),412(1008),413( 720),414(1296),415( 672),416(1008), 
417( 768),418( 384),419( 864),420( 960),421( 504),422(1368),423(1080),424(1008), 
425(1008),426( 576),427( 864),428( 864),429( 576),430( 432),431(1056),432(2688), 
433( 480),434( 768),435(1440),436( 864),437( 576),438( 480),439(1008),440(1608), 
441(1008),442( 672),443( 960),444( 864),445( 480),446( 720),447(1920),448( 720), 
449(1512),450( 840),451( 576),452(1200),453( 720),454( 480),455(1152),456( 864), 
457( 768),458( 960),459(1536),460(1008),461( 768),462(1056),463( 840),464(1056), 
465( 576),466( 384),467(1800),468(2016),469( 576),470( 864),471( 720),472( 864), 
473( 480),474(1200),475(1200),476(1296),477(1800),478( 288),479(1008),480(1344), 
481( 576) ,482( 864),483( 936),484(1320),485( 624),486( 936),487(1368),488(1296), 
489( 672),490( 648),491(1824),492(1152),493( 384),494( 960),495(2304),496( 672), 
497( 960),498( 864),499(1296),500(1728),501( 672),502( 744),503(1728),504(1440), 
505( 672),506( 624),507(1560),508( 648),509( 864),510( 960),511( 744),512(2976), 
513( 768),514( 528),515( 864),516(1440),517( 672),518( 672),519(1440),520( 864), 
521( 720),522( 792),523(1296),524(1440),525(1200),526( 672),527(2016),528(1176), 
529( 552),530(1008),531(1440),532(1920),533( 768),534( 768),535( 864),536( 864), 
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TABLE 1 (continued) 
537( 960),538( 648),539(2240),540(1728),541( 360),542( 912),543(1008),544(1344), 
545(1152),546( 864),547( 864),548(1200),549(1512),550( 672),551(1152),552(1440), 
553( 672),554( 960),555(1728),556( 648),557(1368),558( 720),559(1056),560(1344), 
561( 768),562( 864),563( 720),564(1920),565( 912),566(1224),567(2592),568(1008), 
569( 672),570( 576),571( 720),572(2304),573( 672),574( 672),575(3150),576(2016), 
577( 816),578( 816),579(1728),580( 960),581( 672),582(1152),583( 720),584(1728), 
585( 960),586( 840),587(2352),588(1296),589( 768),590( 768),591(1008),592(1056), 
593(1152),594(1536),595( 864),596(1440),597(1056),598( 480),599(1080),600(2160), 
601( 816),602(1440),603(2520),604( 936),605(1056),606( 624),607(1512),608(1344), 
609( 768),610( 960),611(1728),612(2400),613( 504),614(1152),615(1152),616( 864), 
617(1584),618( 720),619(1344),620(2304),621(1152),622( 864),623(1920),624(2064), 
625( 600),626( 576),627(2016),628(1152),629(1440),630(1584),631(1296),632(1296), 
633( 960),634( 576),635(1920),636(1008),637( 864),638(1296),639(1800),640(1440), 
641( 672),642(1824),643(1008),644(1920),645( 960),646( 576),647(2268),648(1224), 
649( 960),650( 960),651(1536),652(2088),653( 624),654( 864),655(1344),656(2880), 
657(1728),658( 576),659(1728),660(1920),661( 408),662(1056),663(1440),664(1440), 
665(1152),666(1200),667(1440),668(1008),669(1152),670(1056),671(1344),672(2016), 
673( 576),674(1344),675(2178),676( 780),677(1872),678( 864),679(1152),680(1440), 
681( 960),682( 816),683(1680),684(2160),685(1152),686(1152),687(2112),688(1344), 
689( 960),690( 960),691(1080),692(3744),693( 960),694( 720),695(1152),696(1152), 
697( 768),698(1200),699(1680),700(1512),701(1344),702(1536),703(1104),704(1440), 
705(1344),706( 528),707(2592),708(2400),709( 720),710( 960),711(2160),712(1728), 
713( 768),714(1152),715(2112),716(1008),717(1056),718( 528),719(3528),720(2640), 
721( 912),722(2016),723( 864),724(1920),725(1320),726( 936),727(1584),728(1896), 
729(1944),730( 672),731(1440),732(2016),733( 840) ,734(1296),735(2352),736(1680), 
737(1440),738(1008),739(1152),740(1920),741( 960),742( 864),743(1584),744(1728), 
745( 576),746(1368),747(4320),748(1152),749(1152),750(1440),751(1248),752(1680), 
753( 768),754(1056),755(2304),756(2304),757(1080),758( 864),759(1728),760(1152), 
761(1008),762(1632),763(1440),764(2160),765(1584),766( 720),767(2256),768(1488), 
769( 672),770(1152),771(1440),772(1440),773(1800),774(1800),775(1440),776(2016), 
777(1152),778( 720),779(1920),780(1728),781( 576),782(1920),783(3024),784(2016), 
785(1632),786( 672),787(1800),788(2016),789(1152),790( 864),791(1440),792(4320), 
793( 576),794( 864),795(1440),796(1512),797(1344),798( 960),799(2352),800(3528), 
801( 960),802(1056),803(1728),804(1920),805( 960),806(1248),807(2304),808( 720), 
809(1632),810(2376),811(1344),812(1728),813(1248),814( 768),815(2112),816(1344), 
817(1536),818(1200),819(2592),820(1536),821(1008),822(1200),823( 864),824(3024), 
825(1344),826( 816),827(3960),828(l1800),829( 960),830( 960),831(2880),832(2576), 
833( 864),834(1152),835(1152),836(1920),837(1344),838(1128),839(2016),840(2064), 
841(1044),842(1296),843(1824),844(1080),845(1800),846(1584),847(2184),848(2640), 
849(1440),850(1200),851(1440),852(3840),853( 672),854(2304),855(2160),856( 864), 
857(1248),858( 960),859(1680),860(1728),861(1440),862(1152),863(2016),864(2688), 
865( 960),866( 912),867(2736),868(1440),869(1536),870( 960),871( 864),872(2880), 
873(2160),874(1152),875(3456),876(2592),877( 936),878( 912),879(1920),880(2016), 
881(1296),882(2100),883(1152),884(2688),885( 864),886( 792),887(3600),888(1440), 
889( 960),890(2592),891(2040),892(1296),893( 960),894(1728),895(2160),896(1440), 
897(2112),898( 816),899(2700),900(3600),901( 864),902(1536),903(1440),904(1440), 
905(1248),906(1296),907(2160),908(2376),909(1920),910( 960),911(2352),912(2688), 
913( 768),914( 864),915(1728),916(2400),917(3072),918(1728),919(1584),920(1728), 
921( 864),922(1536),923(1920),924(2016),925(1176),926(1200),927(3528),928(2016), 
929(1632),930(2016),931(1296),932(3120),933( 864),934( 864),935(2592),936(2160) 
937(1008),938(1248),939(3648),940(1008),941(1296),942(1728),943(2112),944 (2688), 
945(2304),946( 864),947(2016),948(1536),949(1008),950(2016),951(1440),952(2592), 
953(1680),954(1584),955(1440),956(1728),957(1920),958( 768),959(2304),960(2M28), 
961( 744),962(2736),963(2160),964(1920),965(1152),966( 864),967(2772),968(1872), 
969(1536),970( 816),971(4368),972(3744),973( 720),974(2640),975(3360),976(1056), 
977(1152),978(1152),979(2016),980(4320),981(1944),982(1320),983(1584),984(1728), 
985(1536),986(1152),987(2880),988(1440),989(1440),990(1680),991(1344),992(3696), 
993(1440),994(1056),995(2016),996(1920),997(1608),998( 960),999(3456),1000(1728) 

sum of conjugacy classes = 1031772 



1300 RALPH PHILLIPS 

35 

30 

25 - 

20 

15 

10 

so 60 40 20 0 20406 06 80>- 
O(x) <x O(x) >x 

FIGURE 7. Histogram. Remainder = 10(x) - xl = xg; 800 < 
trace number < 1200 

There are examples in number theory where the true asymptotic nature of 
a series does not reveal itself until very far out in the series, and it could be 
that this is the case here. However, as we show in the next section, the negative 
bias of the remainders (0(x) - x) and (7r(x) - li(x)) holds up in the limit. In 
fact, the limit of the mean normalized remainder (MNR) is -7 in both cases. 
For 0 the data for trace numbers n < 1000 (starting at n = 51) produced an 
MNR of -6.90, and the MNR for Xr was -7.88 at n = 1000 (see Table 2). 
Both results are reasonably close to the asymptotic limit. The MNR formula is 
for an integrated mean, so we evaluated the x in (0(x) - x) at the midpoint 
between 4n + 2 and 4n + 6 for each trace number. There are two reasons why 
the MNR values for Xr are less reliable than those for 0: (1) we compensated 
for the integral mean by taking the values of li(x) for the nth trace number to 
be the average of its values at the traces 4n + 2.3 + i, i = 0, 1, 2, 3; using 2.3 
instead of 2.5 allows for the decreasing slope of li(x)-a change of 0.1 in the 
trace results in a change of -0.2 in the MNR and (2) the MNR was computed 
using an averaging function with an abrupt discontinuity at s = 1 , whereas the 
proofs of Theorems 4.1 and 4.3 require a smooth averaging function, smoother 
for Xr than for 0. Using our formula (4.26), V. Golovchansky and M. Smotrov 
have obtained similar results for the MNR of 7r for Fo(N) with several N's 
(personal communication). 

Finally, we mention that for character parameters 4 = 1/8 and 3/8, ?1 = 0, 
and for n < 1000 we found that ,(n) = 0 (see (1.5)) for n = 1, 2mod4 
except for n = 1 and 49. 
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TABLE 2. The MNR (a) for 0 and (b) for 7r. Column 1: trace 
number; 2: number of conjugacy classes; 3: 0(x) for (a) and 
7r(x) for (b); 4: MNR 

100 300 163229 -6.70 100 300 14938 -8.23 
150 360 361686 -6.86 150 360 30862 -8.29 
200 504 641659 -6.74 200 504 52202 -8.10 
250 432 996198 -6.99 250 432 78242 -8.29 
300 1008 1452763 -6.65 300 1008 110816 -7.91 
350 960 1959925 -6.69 350 960 146156 -7.91 
400 1200 2571805 -6.91 400 1200 187964 -8.09 
450 840 3249160 -6.98 450 840 233468 -8.13 
500 1728 4016388 -7.10 500 1728 284252 -8.24 
550 672 4840320 -6.71 550 672 338092 -7.82 
600 2160 5758380 -6.85 600 2160 397378 -7.94 
650 960 6758825 -6.75 650 960 461302 -7.82 
700 1512 7825128 -6.83 700 1512 528772 -7.88 
750 1440 9021235 -6.86 750 1440 603772 -7.89 
800 3528 10271902 -6.89 800 3528 681532 -7.91 
850 1200 11559333 -6.89 850 1200 760968 -7.90 
900 3600 12995242 -6.89 900 3600 848928 -7.89 
950 2016 14432211 -6.89 950 2016 936360 -7.88 

1000 1728 16010282 -6.90 1000 1728 1031772 -7.88 

(a) (b) 

4. THE MEAN NORMALIZED REMAINDER 

We see from Fig. 7 that the remainder (0(x) - x) exhibits a negative bias. 
In this section we explain this bias by showing that the mean normalized re- 
mainder, 

(4.1) MNR(T) = JVT (S)M(((es) - (s))le /2 ) ds, 

is eventually negative (cf. [6]); here, 

(4.2) i(s) = E e( 112+Po)sl( 1/2 + PJ) 

the sum is over the exceptional eigenvalues Aj = 1/4 - p2 < 1/4, pj > 0, of 
the Laplacian, y1T(S) = VI(s/T)/T, and V/ is C(l) with piecewise continuous 
second derivative and 

(4.3) t(s) O> , supp y c (O, 1) and JVf(s) ds = l. 

In the case of 17(2), 2(s) = es. A similar result holds for the prime geodesic 
function ir(x) (see Theorem 4.3). 

Theorem 4.1. Let r be a discrete cofinite subgroup of PSL(2, R) with K > 0 
cusps and v cusp forms at A = 1/4. Then 

(4.4) lim MNR(T) = 4v - K + tr(?(l1 /2)) - 1, 
T-oo 

where 1P is the scattering matrix. 

Remark 1. If r is cocompact, then K = 0 = dp. 
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Remark 2. For I(2), K = 3, v = 0, and tr(o(1/2)) = -3, so that the limit is 
equal to -7. 

Proof of Theorem 4.1. We begin by setting 

(4-5) C eosa)2 for lal < s, 
WSk(J) for Iol ?s, 

and 

(4.6) gT(a) = YvT(s)ws(a)e-s2 ds. 

Then 

(4.7) O(es) = n(N(y))N(y)- 12O(1n(N(y))) 

and 
T 

(4.8) j WT(s)O(es)es/2 ds ln(N(y))N(y)--12grTIn(N(y))) 

both sums being over the primitive conjugacy classes {y} of F. The integral 
gT in (4.6) is an even function with support in (- T, T) and 

(4.9) gT(O) = c(T) = j y(u)e-uTI2du = O(1/T). 

The Fourier transform of gT iS 
(4.10) 

hT(r) = 2j cosar gT(a)d = 2j IT(s)e sl(I2 cosar ea/2da) ds 

= 4(1 + 4r2)- (j (cosoarT + 2rsinarT) (a)da - c(T)) 

Upon integrating the right-hand side by parts, we see that 

(4.11) hT(r) = O(1/(Tr2)) 

and is uniformly bounded. Similarly, 

(4.11)' h' (r) = O(l /((l + r2)jrj)) 

and in addition, h' (r) 0 for each r as T -4 oc. It is easily verified that 

(4.12) hT(O) = 4(1 - c(T)) -- 4 

and by (4.10) that 

hT(ip) = | yIT(s)e-12 (j(eaP + e-'P)ea/2 da) ds 
(4.13) ? 

s 
ep_ Ds(r12. + P-IT s) d s _ . s1 1T 
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Summing over the exceptional eigenvalues Aj = 1/4 - p2 < 1/4, pj > 0, we 
get 

(4.14) E h T(ipj) = 2 VT (S) E (s) e/2 ds + O(1/T). 

In order to apply the Selberg trace formula, we first have to mollify COw. To 
this end, let ;(a) E COO?(R) have support in (-1, 1) with f4'(a)da = 1 and 
set 4' (a) = S(a/e)/e . Replacing co by co * SE , we now deal with 

(4.15) gT,e(a) = gT* C. and hT,e(r) = hT(r);e(r). 

The Selberg trace formula [10] can now be written as 
(4.16) 

ZhT, e(r) + E hT,e(ipJ) + 2vhT,e(0) - 1/27r ]hT, e(r) -(1/2 + ir) dr 

= IFI/27r f hT, e(r)r tanh(7rr) dr + 1/2[K - tr(c(I/2))]hT, e (0) 

- 2K ln 2gT,,e(0) + elliptic + hyperbolic- K/7r J hT,e(r) 4 (1/2+ ir) dr, 

where (0 = det((D). 
To within o(l), the sum over the real nonzero r's together with the integral 

on the left-hand side is cancelled out by the first term on the right-hand side. 
In fact, it is known that [10] (cf. [3]) 
(4.17) 

N(R) = #{1r11 < R} - 1/27r J f (1/2 + ir) dr = (IFI/27r)R2 + O(RlnR), 

and it follows from this that the three terms cancel each other to within an error 
which, by (4.11)', is of order 

(4.18) Ih'T(r)lrlnrdr = o(l). 

All of the other terms are finite and remain so as we take the limit as e -+ 0. 
We are then left with a trace formula in gT and hT without the above three 
terms. The gT(O) term, the elliptic term, and the f hT(r) r (1/2 + ir) dr term 
are easily seen to be of o(1) . There remains the sum over the imaginary r's on 
the left-hand side (given by (4.14)), the hT(O) terms and the hyperbolic term 
on the right-hand side. 

The hyperbolic term is now equal to 

T 

(4.19) hyperbolic = 2j dsVT (s)e-s/2ZZn(N(y))(1 - N(y-k)-l, 

where the inner sum is over 1 < k < s/ ln(N(y)) and the outer sum is over the 
primitive conjugacy classes with ln(N(y)) < s. Hence, the right-hand side of 
(4.19) can be rewritten as 
(4.20) 

2f ds T(s)es/2 Z 6(es/k) + o( dsT(s)e-s12 e-ka d0(e a) 
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where the sums are over 1 < k < s/mn, with m = In (smallest norm). Using 
the crude estimate 0(es) es, we can easily see that except for the first two 
terms (in the first sum), this is O( IT). The first term is 

IT 
2 t/ T(s)e-,120(el) ds, 

whereas the second term converges to 2 as T - oo0. Combining all of the 
above (in particular, (4.12), (4.14), (4.16), and (4.20)), we finally end up with 
the assertion (4.4) as desired. 0 

Since the maximum deviation is clearly greater than the mean deviation, 
Theorem 4.1 implies the following omega result: 

Corollary 4.2. If 4v - K + tr(0(1/2)) # 1, then 

(4.21) 10(es) - ?(s) - = Q(es/2) 

This approach carries over to the prime geodesic function 

(4.22) lr(x)=Z1, 

summed over the primitive conjugacy classes of norm < x. It is clear from the 
definition of 0(x) that 

(4.23) 7r(es) = j l/a d0(e') = 0(es)/s + j 0(eo)/a2 da, 

where 0 < 3 < min ln(N(y)) over all norms N(y) with y hyperbolic. Setting 

(4.24) 1(s) = X(sI)/s and ?2(s)= jX(a)/a2du, 

we can write 

(4.25) 7r(es) - ? (s) - ?2(s) = (0(es) - ?(s))/s + j(8(ea) - 1(a))/a2 da. 

Theorem 4.3. The mean normalized remainder is given by 

T 

(4.26) lim j -I(s)se-sl2(X(es)-1 (s) -X2(s)) ds = 4v -K+tr((D(l/2)) - 1. 
T_--oo 

Idea of proof. The assertion (4.26) will follow from Theorem 4.1 if we can show 
that 

(4.27) I(T) = yIT(s)se-s12 (0(e) - X(a))/a2 da ds -O 0. 

To this end, we define c E CO(R) as 

eIT(/2 for IT < I(I r)T) for ITI ? a, (4.2) ((Z)= {0 forlITI< 612 {0 forITI > a. 
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Then 

(4.29) j 6(e')/a2 da = ln(N(y))N(y)-/2 j ; w(ln(N(y)))/a da, 

summed over the primitive conjugacy classes. 
Next, we apply the Selberg trace formula, with 

T s 

gT(T) = X IT(s)se-s12 X jw(T)/a2 du ds 

T 
(4.30) -= C j(T) | VT(s)se (l/T - 1/s) ds, 

hT(r) = 2 Jcos TrgT(T)dT . 

It is easy to show that gT(O) = 0 = gT(T) and that 
(4.31) 

rT rT 
j g(ir)(T)IdT =O(1/T) and jT1Tg(T)1dT=Q(l) for i =0 ...,3, 

and it follows from this that 

(4.32) hT(r) = O(I/(T(I + r2))) and h' (r) = O(1/(l + IrI3)); 

for the latter estimate we need one more degree of smoothness in yi. Rewriting 
hT(r) as in (4.10), we can show that h' (r) = o(1) for each r. The rest of the 
argument follows that of Theorem 4.1. o 

Corollary 4.4. If 4v - K + tr(?(D1/2)) #& 1, then 

(4.33) 17r(es) - I(S) - X2(s)I = Q(Ss/2/S). 

In computing the MNR we have used the formula 
T 

(4.34) MNR(T) = normalized mean d tr/(T- 50). 
50 

To make this into a mean of the type used in Theorems 4.1 and 4.3, we would 
have to change d tr into d tr / tr, the integral range into 1 to T, and (T - 50) 
into ln(T). We chose to give more weight to the larger values of tr. 
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